TIME PARALLEL ALGO RITHMS FOR SOLUTION
OF TIME-DEPENDENT PDES

AMIR FIJANY JACOBBARHEN, and NIKZAD T'OOMARIAN
Center for Space Microelectronics Technology
Jet Propulsion [laboratory, California Institute of Technology
Pasadena, CA91109, USA

ABSTRACT
Parallel algorithms for solution of time-dependent partial differential equations (} 'DEs) are de-
veloped. It is shown that, for a wide class of suchPDEs, the seemingly strictly sequential time-
stepping procedures can be fully parallelizedintime. This results inalgorithms that offer a
massive degree of coarse grain temporal parallelism in the com putation, and have a highly decou-
pled structure with simple communication and synchironization requirements. Such algorithims are
particularly eflicient for implementation on emerging massively parallel MIMD architectures.

Keywords: Time-parallel algorithms, time-dependent PDEs, time-stepping procedures, Crank-
Nicolson method, time- and space-parallel computation, MIMD architectures.

1. Introduction

The solution of time-dependent PDEs is at the heart of many scientific and
engineering applications. The corresponding development of fast and accurate al-
gorithms has been extensively studiedinthe literature. The advent of massively
parallel architectures offers anew opportunity for faster solution of evermorecom-
plex problems. However, in order to fully exploit the comnputing power of these
new architectures, existing algorithms must be reexamined, with emphasis on their
efliciency for paralel implementation. Fventually, new algorithins may have to be
developed that, from the onset, take a greater advantage of the available massive
parallelism.

[n this paper, we present a noveltechnique for solution of time-dependent PDEs
whit.li is particularly eflicient for implementation on einerging massively parallel
MIMD architectures. By departing frotn conventional approaches, our proposed
technique allows the solution of such PDEs 10 be fully parallelized in tiine, resulting
i n algorithims which offer a massive degree of coarse grain temporal parallel isin

with a minimum of communication and syuchronization requirement. Wc have
already applied this technique to the solution of a simple model problem, i.e, the
heat equation [1]. The subsequent practicalimplementation of our time-parallel
algorithin on a massively parallel M IM D architecture, the Intel’s Tout.hstonc Delta,
has shown that a significant speedup can be achieved even by using a very large
nuinber of processors, €.g., on the order of hundreds [2].

In the sequel, we present the general concepts underlying our approach to
titne-parallel computation, anti discuss its domain of eflicient applicability. We aso
analyze keyissues in extending our technique to more complex problems, which
highlights the framework underlying our current research eflorts. The paper is or-
ganized as follows. Time-stepping procedures for solution of titne-dependent PDFEs
and current parallel computation approaches are reviewed in §2. The novel timme-
parallel algorithms are presented in §3,and their efficiency and applicability are
discussed in §4. In §5, time-parallel algorithms for two model problems are pre-
sented and their performance is analyzed. Finally, some concluding remarksare
made in §6.

2. Background
2.1. Time-Slepping Procedures

The algorithins discussed in this paper can be applied to the solution of a wide
class of time-depcnricnt. PDEs. However, inorder to provide asimple illustration
for our discussion, let us consider a parabolic. equation on a 2D regular domain €2,
with boundary W, i.e,

%{:CU-{af(z,y,t) inQfor7">t>0 (1)
with initial and Dirichlet boundary conditions given by
Uo = h(z,y), in Q for t= 0, andU = g(x,y), on W for T >t >0
InEq. (I), £ is a linear elliptic operator and f(,y, t)is asource vector.

The discretization of Eq. (1) in both time and space, by superimposing a
uniform grid of size y=Axz= Ay on 2, and using a standard finite- difference
scheme, leads to a family of time-stepping inethods formalized as

(I 4 2aMU™ = (1 = 2a(1 -- BIMHUD 4 FO = 1o M (2)
where 1 and M eRN*xN? denote the identity matrix and the mnatrix arising from
the discretization of £, respectively. Here,a =7/2v%, 7 =- Atisthe time step
size, M =7'/7, and N is the grid size. Furthermore, U™ and FUeRN denote
the approximate solution vector attimestepn and the vector resulting from the
disc retization of f(z,y,t)and g(x, y), respectively.

Three methods are usually invoked for tile solution of Eq. (1). They are
characterized in terms of the parameter 3 as: Explicit mmethod (8 = O); Implicit
method (4 = 1); and Crank- k-Nicolson (C-N)method (= 1/2). The explicit method
is conditionally stable, while both theimplicit and C-Nmethods are unconditionally
stable. Furthermore, the C-N method is sccond-order accurate in time, while the
implicit method is only first-order accurate.

2

From a computational point of view, tile solution of Eq. (2) is both timne
(number Of time steps, M) and space (size of grid, N}dependent. In the sequel,
thetermn space-prrralcl is used for algorithmsthat only exploit parallelisin in solving
q.(2) a each time step, while the terimn time-parallel refers to those algorithms
that exploit parallelisin in the computation of all vectors U™ m =1to M .

2.2, Current Trends tn Developing Parallel Algorithms

Recent directions in developing fast parallel algorithms for solution of time-
dependent P D Es seem to have emerged from two widely acknowledged observations
(see, for example, [3,4]) regarding the efliciency of time-stepping methods for paralléel
computation:

(i) The explicit methods, while limited in their range of stability, are highly ef-
ficient for parallel/vector processing, sine.c the computation at each time step
mainly involves a matrix-vector multiplication (hlVM);

(ii) The implicit and C-N methods, despite their superior numnerical properties, are
not eflicient for parallel/vector processing,since the solution of alinear system
is required at each time step.

The first observation has motivated the developient of new explicit methods which,
while preserving the efliciency for parallel/vector computation, offer better numer-
ical properties [5,6]. Note, however, that the parallelismin these methods is rather
fine grain and, even with improved stability, a very large number of time steps is till
required. The second observation has led to approaches emphasizing an increase in
the efliciency of implicit methods for p arallel computationi[4,7]). All these approaches
result in space-parallel algorithins, since they attempt to parallelize the computa-
tion at each time step while the overall computation remains strictly sequential in
time.

The computation of time-stepping procedures in Eq.(2)is generally assumed
to be strictly sequential in time. This has motivated the development of new
paradigins, mostly in the form of iterative techniques, to achieve some level of
temporal paralelism [8]-[13]. However, al these appfoaclnes sectnto have achieved
a rather limited parallelism in time. Indeed, Wornble [10] supports the assessment
of [14], wherein a simultaneous solution for al time stepsis not considered practical.

In the sequel, wepresent a technique which, for a wide class of problems,
allows the time-stepping computation to be fully parallelized in time. Interestingly,
for this class of problems, our approach establishes a rather surprising result: the
C-N method is significan tly more efficient than the explicit and implicit niethods for
fizttc-parallel compulalion.

3. Time Parallel Algorithms

To motivate the idea of titne-par allelisin | notice that Eq. {(2) can be interpreted
in terms of First-Order Inhomogeneous LincarRecurrences (F OILR). The solution
of such recurrences can becomputed in O(Log A4) by using, for example, the
algorithms in [15]. Thi s indicates that th e cor nputation is fully parallelizable in
tirne, wherein the time lower bound of O(Log M) can be achieved.

3

From an efliciency stand point, however, suet] an approach is not practical,
since it involves the computation of explicit inverse and powers of matrices in kEq.
(2). Starting with highly sparse matrices, this wouldlead to the generation of
increasingly dense and ultimately full matrices. For 2D and 3D problems, the
Complexity of eachstep of such a time-parallel algorithin would then be of O(N¢)
and O(N?), respectively, with the overall complexity of the algorithm being of
O(NSLog M) and O(N°l.og M). Thus, although the comnplexity of the computation
could be reduced in time, it would be signifi ¢ antly increased in the spatial domain.
As a result, the computational cost of such time-parallel algorithms would be orders
of magnitude greater than that of the best serial algorithm for most practical cases.
Nevertheless, this observation clearly suggesisthat,insofar as the data dependency
in the computation is concerned, the time-stepping procedures can, in principle, be
Jully parallelized in tine.

3.1. Introduction ‘of Temporal Parallelism in Computation

Motivated by the above observation, we propose a technique which, for a wide
class of time-dependent PDEs, alows thetiine-stepping procedures to beefficiently
parallelized in time, leading to highly practical algorithms for massively parallel
computation. The fundamental idea of our time-parallel computation is to introduce
adiagonalization process in the time-stel)ping schemes. 1'0 describe our approach,
let us consider the C-N method given by Eq. (2). Note that the matrices on the left-
and right-hand sides of the equation are simultaneously diagonalizable, i.e, they
have the sameset of eigenvectors. Let the Figenvalue-Eigenvector Decomposition
(EED) of the nonsingular matrix Mgbe given by:

Mg = OAO™!
Substituting the above decoinposition into Eq. (2) results in
(I 4 a®AO~ UM = (] - a®AQ~HYUM=D 4 W = L to M
Ol 4 aM)O~ UM = O —aA)O UMD 4 M o Lo M
Multiplying both sides by the nonsingular matrix @~ !, we obtain
(I 4 aM)O~ UM = (] = aA)O~ UMD g o1 FM i =1to M

Lt U™ = @~ 'UM) = 0 to M, and F™ =@~ 'F(M) ;=110 M. It follows
that : R
(I 4+ «A)U™ = (] = aA)UU 1) o) m=1ltoM

Definingthe diagonal matrices
Dy=(1 + aAY }(J —aA) and Dy = (1 4aA)™! (3)

we get .
) = DM =1 § Dy 0w m=1toM (4)

4

which is a transformation of Eq. (2) into a diagonal formn. In contrast to Eq.
(2), however,Eq.(4) is highly eflicient for parallel computation. For 2D and 3D
probleins, the complexity of sequentialimplementation of Eq. (4) is of O(M N?) and
0(M N3),respectively. With O(M)processors, the computation can be performed
in O(N?Log M) and O{ N3Log M) by adapting the algorithms of [15].

3.2, Structure of the Time-Parallel A lgorithins

From our discussion regarding the diagonalization process, ahighlevel descrip-
tion of the time-parallel agorithms can be givenin terms of the following steps:

1. Compute the eigenpairs of Mg
2. Compute the diagonal matrices Iy and)y from Eq. (3)
3. Compute U® and jr(m)
U = g-1y(0) (5)

[}(m) - O 1 [,‘('") '?)]_ =1toM (6)

4. Compute (™) hy solving in parallelthe FOILR inEq. (4).
5. Compute (M)
Ut = ot m=1lte M (7

If Me is symmetric, then ©~!= @7 where 7'denotes transpose. I'bus, in Egs.
(5)-(6), MVMS rather than linear system solutions are required, For nonsymmetric
M c, the linear system solutions can also be avoided by noting that ©~'is the
matrix of the eigenvectors of M%. “I'bus, if in Step 1 the eigenvectors of M%
are also computed, then the operations in Fgs. (5)-(6) can be reduced to MVMS.
in a parallel environment. with a suflicient number of processors, this does not
degrade the computational efliciency, since thee.onlputationsforMc and MZ can
be performed in parallel (see also §5.2).

The computations in Steps 1 and 2 are space dependent, and need to be per-
formed once (see below). Steps 3 and b highlight the full temporal decoupling.
With OQ(M) processors, the corresponding computations can he performed with a
complexity of 0(1) in time anti of O(k)inspace, With no cormmunication among
processors, where k stands for the cost of an MVM. The only communication oc-
curs in the parallel solution of the FOILR inEq. (4). As can he seen, our proposed
time-parallel algorithms have a highly decoupled structure. Formany applications
of interest, M is very large (of the order of hundreds or thousands). Thus, such
a time-parallel computing approach will lead to amassive degree Of coarse grain
temnporal parallelisin witnh sitnple communicati on and synchronization requirements.

Besides Step |, the most computation-intensive part of the time-parallel algo-
rithms is the MVMin Steps 3 and 5. In general, for 21> and 3D problems, tile
corresponding cost is of (N *)and O(N®). This represents amajor improvernent
over the direct paralel computation of Eq. ('2). However, as will be shown below,
for a wide class of problems one can exploit the structure of matrix M, so that
both the computation of Step 1 and, the MVMs in Steps 3 aud 5 can be performed
with a greater efficiency.

poal

3.8. Time-Parallel Computation of the Ezplicit and Implicit Mcthods

our tilne-parallel computing approach can aso be directly applied to the ex-
plicit and implicit methods, given by Eq. (2), by using the same diagonalization
technique. The resulting time-parallel agorithms will havea similar computational
structure, the only difference being in the definition of the diagonal matrices D,
and D2 For the explicit method, we would obtain Dv=1]- 2aA and D, =1 while
for the implicit method, we would have Dy =z: Dy = (1 42aA)™ 1.

However, in order to satisfy the stability constraints, and achieve the same level
of accuracy asthe C-N method, both theimplicit and explicit methods require a
much larger number of time-steps. This implies that, for a given accuracy and
overall computation tirne, the titne-parallel computation of theimplicit and explicit
methods would require a significantly larger number of processors. In other words,
for a given number of processors, the time-parallel computation of the C-N method
will result in a significantly more eflicient overall implementation, with a much
better accuracy, than either theimplicit or explicit methods.

4. Efficiency and Applicability of Time-Parallel Algorithins

The basic idea of time-paralle] computation is rather simple. It is aso general
in the sense that it can directly be appliedto other types of time-dependent PDEs,
such as first order and second erder hyperbolic equations [16]. however, what makes
it a highly practical and eflicient approach for massively parallel environments is
the fact that, for a wide class of applications, the computation of eigenpairs of the
matrix Mg can be performed very efliciently. Furthermore, tile multiplication of
the matrix of eigenvectors by avector can aso be carried out with a great efliciency.

Motivated by the simple structure and assive coarse grain parallelistn under-
lying our approach, we have attempted to identify those problems for which it can
be applied most efliciently. The two main factors under consideration are:

(i) Fast and accurate computation of the eigenpairs of Mg;
(i) Fast multiplication of the matrix of eigenvectorsby a vector.

Although our results arc preliminary, rather surprisingly they indicate that a wide
class of problemns are readily well suited for such an approach. These problemns can
be characterized as those for which the structure of matrix M ¢ can be exploited to
achieve a high computational efficiency for the above two factors. In the following,
abrief discussion of these factors is presented.

4. 1. Fast Compulalion or Eigenpairs o1 My

Depending on tile structure of M, which results fromthetype of elliptic.
operator, the boundary conditions, and the considered domain, we can identify
three main techniques for fast computation of its eigenpairs. The first and second
techniques arc more special, in tile sense that they take a greater advantage of the
specific structure of A, while the third technique 1S mare general, wherein only
the sparsity of M is exploited.

4.1.1. Analytical expression of eigenpairs of Mg

Fora few simple éliptic operators on a regular domain, the analytical expres-
sion of theeigenpairs of M .is known a priori. A typical example is the Laplace
operator ON 21 and 3[) regular domains. However, our analysis indicates that it is
possible to develop analytical formulae for some cases for which no such expressions
were previously known. The first example is the matrix arising from the application
of the C-Nmethod to the solution of a first-order hyperbolic equation. The second
example is thematrix arising from the discretization of convection-diffusion type
operators with constant coeflicients. The corresponding derivations are discussed
in [16].

Eventhoughthe class of problems for which the analytical expression of eigen-
pairs can be derived israther limited, it needs to be further explored since they
are well suited for time-parallel computation. Interestingly, however, as we shall
see in the second example of §5,the availability of analytical expressions dots not
necessarily imply optimal efliciency for ourtime-parallel computation approach.

4.12. A divide and conquer method

The second method can be considered as a divide and conquer approach) which
exploits the specifi ¢ structure of M. Itreducesthe computation of the eigenpairs
of M to the computation of eigenpairs of aset of simpler matrices, e.g., symmetric
and nonsymmetric tridiagonal matrices. Thismethod can be applied to a wide class
of linear operators on regular domains. Our analysis [16] indicates that c.lasses of
such operators include the Laplace operator in polar and spherical coordinates,
separable elliptic. operators, some cases of nonseparable eliptic. operators, etc...

The advantage of this method is its high efliciency, yielding an optimal compu-
tational cost for most cases. It aso offers a high degree of coarse grain paralelism,
since the computation of eigenpairs of the set of tridiagonal matrices can be per-
formed in parallel. Furthermore, the matrix of the eigenvectors can be obtained as
a factor of sparse matrices, whi ch allowsits fast multipli cati on by any vector. This
method is further illustrated in the second example treated in§H.

4.1.3. General sparse matrix techniques

Thethirdmethod is more genera], andcanbeused for problems for which the
first and the second methods cannot beapplied. Regardless of the type of oper-
ator and boundary condition, M. has a highly sparse structure. ‘1’bus, a genera)
approach for eflicient computation of its eigenpairs would be based on the use of
well known techniques for Sparse eigenproblems [1'0]. The key point, however,isthe
fact that we are nol tnlerested in explicit computalion of the matriz of cigenveclors,
bul rather in its multiplication with some veetor. Specifically, it is more eflicient
to obtain the matrix of eigenvectors in a factored form, since its inultiplication by
a vector can thenbe perforimied with a greater efliciency (see below). This is a
clear departure from rmost conventional sparse eigenproblem technigues, wherein
the explicit, computation of the matrix of eigenvectors is sought.

7

4.2. Fast multiplication of a matriz of eigenvectors by a vector

in general,the matrix of eigenvectors, @, is dense, For a2D) problem, the cost of
multiplication of © by avector isof O(N4). Our emphasis on eflicient techniques for
this MVM is based on the following facts. Computing the matrix © in a factored
form allows, in most cases,a much faster MVM, eg., in O(N3) or even in
O(N?Log N). For a typical 2D problem with N of the order of hundreds, this
would result in more thantwo orders of magnitude speedup, regardless of the degree
to which the computation is parallelized in time. Such a significant improvement
provides a strong rationale for techniques that compute the matrix of eigenvectors in
a factored form and thus, by avoiding its explicit evaluation, also achieve a greater
e fliciency in compu ting the eigenpairs of matrix M.

5. Two Examples of Time-Parallel Algorithms

Inorder to better illustrate the concept of time-paral]cl computation, we briefly
discuss its application to two model problemns.

5.1.2D Heat equation

As a first example, we consider the solution of a 2D heat equation or: a square
domain. Note that this model problem has also been considered in [4,5,9, 10,12]. For
the heat equation, the elliptic operator inEq. (1) is tile Laplace operator. Thus,
in terms of the C-N method, Eq.(2)represents a sequence of Poisson equations.
By using Fast Poisson Solvers [18] each solution of Eq. (2) canbe obtained in
0(N2Log N), leading to an overal complexity of O(M N’Log N) in the framework
of the C-N formalism.

On a square domain, the analytical expressions of eigenpairs of the Laplace
operator for different boundary conditions are known. For the Dirichlet boundary
condition, the matrix © is the operator of the 2D Discrete Sine Transforin (DST)
(1], and is given as ©@ = QPQ where Q = Diag{Q, Q, . . . ,Q}s&‘Nz"Nzand QeRNxN
is the operator of the 1 D D. ST. Furthermore, PeRN**N'* s a permutation matrix
which arises in application of 2D discrete transforms. Note that, P7 = P! since
P is a permutation matrix andhence is orthogonal.

The multiplication of matrix © hy any vector is tantamount to performing a
2DD ST, which can he computedin O(N? Log N). ‘I'bus, in a paralel implemen-
tation using O(M) processors, the computational complexity of the time-parallel
algorithm, C7p, is given by

Crp = ayN?Log N + aaN?Log M

where ajanday, are constants andthe lower degree terms areneglected. The
speedup, Sy p, is then obtained as

MN?Log N
@ N*Log N + aaN?Log M

Syp = = O((MLog N)/(lLog N + Log M)) (8)

A comparison of our theoretic.al result, givenbyEq. (8), and the practical
results of implementation of the time-paralel algorithm on the Intel Delta, presented
in [2], with those reported in [4,5,9, 10,12] for this same model problem clearly
indicates the efliciency of our time-parallel computing approach. The results in (2]
also support the assessinent regarding the efliciency of the time-paralle]l algorithms
for implementation on massively paralel MIM D architectures.

5.2. Laplace operator in polar coordinates

As a second example, we consider the solution of probleins involving the Laplace
operator in polar coordinates. Note that, for this example, the analytical expression
of eigenpairs of M is not known. However, as shown below, these eigenpairs can
be efliciently computed by using the Divide-and-Conquer method of 34.1.2.

The Laplace operator in polar coordinates is given by

vy o BV 1U 1o

dp* " pdp p? O¢?

The domain§2 is considered to be an annulus between two circles with radii 0 and
p1. The mesh points in the p-¢ plane are defined by the points of intersection of the
circles p=iAp,i=q-1top+ 1, and the straight lines ¢ = jA@,j = L 1o N, where
A¢ =2x/N.For simplicity, it is assumed that po= (Q —)Ap, ;1= (p -t- 1)Ap
and K =p- g+ 1. With Dirichlet boundary conditions, and using the five-point
finite-difference scheme, M is a block tridiagonal matrix given by (see also [19])

M .= Tridiag[(1 - 1/20)1, Bi, (1 + 1/2)}eR¥N*EN i = g to p

where / is the N « N identity matrix, Bi= BB - 2] with i =(1/iA¢)?, and
B isan N x N symmetric tridiagonal matrix with a periodic structure given by
B = Tridiag{l, -2, 1] with B;ny =Bx; = 1. Note that this periodic structure of
B results from the periodicity in ¢. The following theorem is used in deriving the
EED of M ..

Theorem 1. The EED of the matrix B is given by
B=rFDpF!
where F isthe matrix of eigenvectorsand) ==Diag{d; },] = 1to N, isthe diagonal
matrix of eigenvalues, with d; = —4sin*[(j — 1)7/N].
Proof. See for example [20, p.253). CI

The matrices F and F* are the direct and inverse | 1) Discrete Fourier Transform
(DFT) operators. Thus, their multiplicationby any vector can be performed in
O(N Log N). From the definition of Bi, it follows that Biand I? share the same
set of eigenvectors, The EED of Bi is then givenby Bi=FAif=! where

Ai = Diag{Aij} = BilD - 21,5 =1 to N, and Aij = Bidj - 2.

9

Theorem 2. The EED of M, is given by

Mc = FPQAQ !PT 7! (9)

where F = Diag{ F, F, F}and A is the diagonal matrix of eigenvalues which,
along with the matrix Q,”is defined below.

Proof. The matrix Mr. can be written as
M = Tridiag[(1 — 1/2i)], FAi F™' (1 4 1/2i))= FR 7! (lo)

where R = Tridiag[(1 - 1/2i)], A, (1 -t 1/2i)1]). The block elements of R are
diagonal. I'bus, it can be reduced to ablock diagona inatrix T using

R = PPTRPPT = p(PTRP)PT == PTP? (11)

where T = Diag{T;}eRFN*KN and 7; = Tridiag [(1 - 1/24), Mij» (14 1/20)]eRK K
j =1toNandi=gqtop. Now,let tile EED of 7jbe given by ']'J':Q,-AjQJ'-“l .
Defining Q = Diag{Q;} and A = Diag{A;},j = 1to N, it follows that

T = QAQ™! (12)

=%

The EED of ML, given byEq. (9), is obtained by substituting, Egs.(1 1)-(12) into
Eq. (lo). D

The matrix 7j is sign symmelric, since the products of pairs of the corre-
sponding ofl-diagonal elements are al nonzero and positive, and hence has real
eigenvalues. Due to this property, all eigenpairs of 7jcanbe efficiently computed
by using, for example, the subroutine RT provided by EISPACK [21]. Multiplica-
tion of a vector by Q7 ! corresponds to the solution of a linear system involving
a computational cost of 0(1< °). However, following our discussionin §3.2., this
operation can be reduced to anMVM with a cost of O(K?)by noting that Qj"‘
is the matrix of eigenvectors of matrix T]'. Therefore, if the EED of TJT is dso
computed, then the matrix @ Is explicitly obtainedand its multiplication by a
vector represents a simple MVM. For typical values of K of the order of hundreds,
this scheme results in two orders of magnitude improvement in the computational
efliciency.

Now, let us consider a paralel implementation hy using M processors. Assum-
ing M>2N,the EED of 2N sign symmetric tridiagonal matrices 7jand 77 can be
performed in paralel, leading to a cost of (K ?)for Step 1. The diagonal matrices
Dy and D2 canbe computed in O(K N)and the cost of parallel solution of the
FOILR in Eq. (4) is of O(K N Log M). Note that, the matrix of eigenvectors, ©, is
obtained in a factored form as @ =FPQ. ‘T'bus, the multiplication of © and ©!
by a vector in Steps 3 and 5 can be performed at a cost of a; K2N 4 as KN Log N,
where @1 and a» are constants, andlower degree terms are neglected. The cost of
such an implementation of time-parallel algorithin, (7 p, is then given by

Crp = K*N 4 as KN Log N4 asKNlLog M

10

where ag is a constant. and lower degreeterins are neglected.

The fast Poisson solvers of {18] can also beextended to solution of the problem
in polar coordinates. This implies that, for the C-Ninethod, the cost of the best
scrial algorithm for each solution of Eq.(2)isof O{ K N Log N), leading to an overall
complexity of O(A4 K N Log N). The speedup of the time-parallel algorithm, S7p,
is then given by

MKN Log N _
ay K*N +a, KNLog N 4 asl{NLog M ~—

Stp = O((MLog N)/K)

At first glance, it might have seemed that the time-parallel algorithms are
most eflicient for those problems for which the analytical expression of eigenpairs
of My are known, and hence no computation is needed. However,our analysis
of theperformance of the time-parallel algorithm for the above example, in which
additional computations are required for derivation of eigenpairs,appears to clearly
indicate the contrary. This result seems to berather generaland shows that, for
most cases, the performance of the timne-parallel algorithms will notbe degraded due
tothe need of computing theeigenpairs,if thelaller is performed efficiently.

6. Conclusion

We have presented a novel technique fOTr 1nassively parallel solution of time-
dependent PDEs. OQur discussion on the eflicient applicability of this technique
clearly indicates that it is relevant to a wide class of PDEs. It was shown that,
for time-parallel computation, the (-Nmethod is significantly more eflicient than
either the explicit or implicit methods. Therefore, our approach enables the use of
fully implicit methods with superior numerical properties and, at same time, with
optimal efliciency for parallel computation.

By using the first and particularly the secondtechnique of § 4.1. for fast com-
putation of eigenpairs of matrix M, we have shown that our approach can readily
be applied to arather large class of problems of practical interest [16]. However,
the solution of problems involving morecomplex elliptic. operators and/or opera-
tors on irregular domains, requires further research work with focus on analyzing
and designing appropriate sparse eigenproblems techniques in the framework of the
discussion in §4.1.3.

Acknowledgements

This research was performed at the Center for Space Microelectronics Technol-
ogy, Jet Propulsion Laboratory, California Institute of ‘1'ethnology. It was jointly
sponsored by innovative Science and ‘1'ethnology Oflice of the Balistic Missile De-
fense Organization, and by the National Aeronautics and Space Administration,
Oflice of Advanced Concepts and Technology. The support and encouragement
of Dr.Paul Messina, Director of the Concurrent Supercomputing Consortium, is
greatly acknowledged.

References

1.

14.

15,

16.

1<

18.

A. Fijany, Time- Parallel Algorithms for Solution of Linear Parabolic PDEs, Proc.
Int.Conf. Parallel Processing (1CPP), Aug. 1993, Vol. 11 1, 51-55.

N. Toomarian, A. Fijany, and J. Barhen, Time Parallel Solution of Linear Partial
Differential Equations on the Intel Touchstone Delta Supercomputer, Concurrency:
Practice and Ezperience, (in press 1994).

J.M.Ortega and R.Gi. Voigt, Solution of Par tial Differential Equations on Vector and
Parallel Computers (SIAM Pub., 1984).

E. Gallopoulos and Y. Saad, On the Parallel Solution of Parabolic Equations, Proc.
ACM Inut. Conf.” ON Supercomputing, June 1989, 17-28.

(3. Rodriguez and D. Wolitzer, Preconditioned Time-Diflerencing for the Parallel
Solution of the Heat Equation, Proc.4thSIAM Conf. on Parallel Processing, 1990,
268-272.

. D. J. Evans, Alternating Group Explicit Methods for the Diffusion Equation, Appl.

Math. Modelling,9 (1985),201-206.

S. M. Serbia, A Scheme for Parallelizing Certain Algorithms for the Linear Inhomo-
geneous Heat equation, SIAM J. Sci. Stat. Comput. |3 (1992) 449-458.

E. Lelarasmee et al, The Waveform Relaxation Method for the Time Domain Analysis
of Large Scale Integrated Circuits, IEEE Trans. Computer-Aided Design, 1 (1982)
131-145.

. J. H. Saltz and V. K. Nail, Towards Developing Robust A lgorithms for Solving Partial

Differential Equations on MIMD Machines, Paralel Computing c (1988) 19-44.

D. E.Womble, A Time-Stepping A lgorithmn for Parallel Computers, SIAM J. Sci.
Stat. Comput. 11 (1990) 824-837.

W. Hackbusch, Fast Numerical Solution of Time Periodic Parabolic Problems by a
Multigrid Method, SIAM J. Sci. Stat. Comput. 2 (1981) 198-206'.

. G. Horton and R. Knirsch, A Time-Parallel Multigrid- Extrapolation Method jor

Parabolic Partial Differential Equations, Parallel Computing 18 (1992)21.29.

S. Vandewalle and R. Piessens, Efficient Parallel Algorithms for Solving Initial-
Boundary Value and Time-Periodic Parabolic Differential Equations, SIAM J. Sci.
Stat. Comput. 13 (1992) 1330-1346.

G. Strang and G. J. Fiz, An Analysis of the Finite Element Method (Prentice- Hall,
1973).

R. Hockney and C. Jesshope, Parallel Computers (Adam Hilger,1981).

A. Fijany, J. Barhen, N. Toomarian, On the Structure of Tifllc-Parallel Algorithms
jor Solution of Time-dependent PDEs, In preparation.

S. Piss anetzky, Sparse Matrirt echnology (Academic Press, 1984).

B. Buzbee, G. Golub, and . Nielson, On Direct Mcthods jor Solving Poisson Fqua-
tions, SIAM J. Numer. A nal. 7 (1970) 627-656.

G. D. Smith, Numerical Solution of Partial [ifferential Equat ions (Clarendon Press,
1985).

C. Van Loan, Computational Framcworks for Fast Fourier Transform ((71AM Pub.,
1992).

. B.T. Smith et al, Matriz Eigensystem Routines- Eispack Guide (Springer Verlag,

1976).

